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Crossover exponent for polymer adsorption in two dimensions
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In view of conflicting results for the crossover exponent, we extend our earlier transfer-matrix
calculations for the adsorption of self-avoiding walks at the boundary of a semi-infinite square lattice.
Analyzing strips with both one and two adsorbing edges, we obtain exp(e/kT,) = 2.041 + 0.002 for
the critical temperature and ¢ = 0.500 £ 0.003 for the crossover exponent. The latter result is in
excellent agreement with the prediction ¢ = % of conformal invariance.
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We consider the adsorption of a long flexible polymer
in two dimensions [1]. The polymer is modeled as a self-
avoiding walk on a semi-infinite square lattice with en-
ergy

E = —€N1 N (1)

where € is a constant and NV; is the number of steps along
the boundary.

This system exhibits an adsorption transition at a crit-
ical temperature T,, with a desorbed phase for T > T,
and an adsorbed phase for T < T,. For T > T, the aver-
age number of steps (N;) of the walk along the boundary
remains finite in the limit N — oo, where N is the to-
tal number of steps of the walk. For T < T,, (N;) is
proportional to N in the large-N limit. At the critical
temperature

(N1) ~ N?, (2)

where ¢ is the crossover exponent.

Using the conformal-invariance approach and the
equivalence [2-4] of the adsorption transition with the
special or multicritical transition of the n-vector model
in the limit n — 0, Burkhardt et al.[5] have derived
the crossover exponent ¢ = % This value also follows
from a geometric picture presented recently by Stella et
al.[6]. The prediction is in good agreement with two
numerical studies. Using the transfer-matrix approach,
Guim and Burkhardt [7] found ¢ = 0.501 + 0.003, and
Veal et al.[8] obtained two estimates, 0.51 + 0.01 and
0.521 £ 0.001. In earlier work based on exact enumera-
tions, Ishinabe [9] estimated ¢ = 0.53 and 0.50 without
quoting uncertainties. From Ishinabe’s data, Kremer [10]
obtained ¢ = 0.55 + 0.1, and 0.55 £ 0.15 with real-space
renormalization. A Monte Carlo study by Birshtein and
Buldyrev [11] gave ¢ = 0.51.

Recently Meirovitch and Chang [12] estimated ¢ with
large-scale Monte Carlo calculations using a new scan-
ning procedure [13]. Considering walks of up to N = 260
steps, they obtained ¢ = 0.562 + 0.020, which is signifi-
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cantly larger than the theoretical prediction ¢ = % This
discrepancy prompted us to check the theoretical predic-
tion by extending the transfer-matrix calculations.

In our earlier transfer-matrix study [7] we analyzed
strips with two adsorbing edges and with widths L of up
to L = 10 lattice constants. In this paper we extend the
calculations to L = 11 and obtain additional independent
estimates by considering strips with one adsorbing and
one free edge as well as strips with two adsorbing edges.
A self-avoiding walk on a narrow strip with two adsorbing
edges has a tendency to tunnel between the two edges.
This tendency is reduced in strips with one adsorbing
and one free edge, and we thought the data with this
boundary geometry might be better behaved, i.e., easier
to extrapolate to infinite L. This turns out to be the
case.

As in [7,14] we work in the grand-canonical ensem-
ble, assigning a surface fugacity K, to each step along
an adsorbing edge and a bulk fugacity K to all other
steps. In the equivalent n-vector model [2-4] with n — 0,
the fugacities K,, K represent an enhanced edge cou-
pling J,/kT and the bulk coupling J/kT, respectively.
In terms of the multicritical values K}, K* of the fugac-
ities corresponding to the special transition [3,4] of the
magnetic system, the polymer adsorption temperature is
given by

e\ K;
exp (kTa) = (3)

Following [7,14] we construct exact transfer matrices
Tl(f) (Ks,K), i = 1,2, for one and two self-avoiding walks,
respectively, on strips of width L. The partition functions
for one and two self-avoiding walks correspond [2-4] to
the spin-spin and energy-energy correlation functions of
the magnetic system, respectively. The correlation length

g) is related to the largest eigenvalue /\%) of Tl(f) by

2 (K, K) = —[mAD (K, K)] " . (4)
Using the best available estimate [15]
K* =0.379 052 28 =+ 0.000 000 14 (5)

for the critical bulk fugacity, we calculate K}(L) and
ys(L), which approach exact values for the semi-infinite
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geometry in the L — oo limit, from the phenomenological
renormalization group equations [16,17]

LY (KAL), K*) = (L-1)7%Y)  (KI(L),K*) (6a)

In{(9¢;" /0K, ) (9¢;) ,/OK.,) ]
= . 6b
1+yS(L) ln[L(L—l)_l] ( )
The derivative in Eq.(6b) is evaluated at K, =
K}(L), K = K*. The crossover exponent ¢ is obtained
from y, using

p="==-y,, (7)
Yy

where y = v = % is the exact result [1] for the bulk
scaling index.

The values of K;(L) and ys(L) for one and two self-
avoiding walks on strips with two adsorbing edges are
listed in Tables I and II, respectively. Corresponding
data for strips with one adsorbing and one free edge are
given in Tables III and IV.
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FIG. 1. K;(L) vs L™'. Curves 1 and 2 show data for one
and two self-avoiding walks, respectively, on strips with two
adsorbing edges. Curves 3 and 4 show data for one and two
self-avoiding walks, respectively, on strips with one adsorbing
and one free edge. Our estimate of the limiting value is indi-
cated by a solid bar on the vertical axis and the estimate of
Meirovitch and Chang by a hatched bar. In the inset linear
extrapolations based on L = 10 and 11 are shown.

TABLE 1. K (L), ys(L) for one self-avoiding walk on strips
with two adsorbing edges

L K: (L) ys(L)
3 0.778 688192 0.676681116
4 0.774 528 422 0.682990167
5 0.773 232660 0.684 332895
6 0.772813 145 0.684 061 232
7 0.772681 154 0.683 302884
8 0.772655 318 0.682423 263
9 0.772671279 0.681 550 036
10 0.772703 465 0.680 728075
11 0.772740958 0.679970766

TABLE II. K;(L), ys(L) for two self-avoiding walks on
strips with two adsorbing edges.

L K (L)
3 0.756 242799
4 0.769 952602
5 0.773762808
6 0.775039077
7
8
9

ys(L)
0.705 069 155
0.686 434 106
0.681 544 491
0.679 480 006
0.678321017
0.677 537601
0.676 942 506
0.676 456 787
0.676 042 269

0.775461501
0.775 554985
0.775513 426
10 0.775416 663
11 0.775299937

TABLE III. K; (L), ys(L) for one self-avoiding walk on
strips with one adsorbing and one free edge.

L K (L) ys(L)

3 0.801 086 900 0.753 733 390
4 0.792 459028 0.736176 262
5 0.787 557457 0.724879078
6 0.784 434946 0.716 937 343
7 0.782300974 0.711018734
8 0.780766 871 0.706 421 646
9 0.779 620658 0.702 738 814

10 0.778737 842 0.699 716 543

11 0.778 040989 0.697188072

TABLE IV. K;(L), ys(L) for two self-avoiding walks on

strips with one adsorbing and one free edge.

L K: (L) ys(L)

3 0.943 538 681 0.925 655415
4 0.880 318 042 0.847 093 272
5 0.849 040 400 0.807 017 784
6 0.830717 936 0.782318 317
7 0.818 865 519 0.765 392 292
8 0.810 658 629 0.753 000 421
9 0.804 686 716 0.743 506 378
10 0.800 173 797 0.735 985 467
11 0.796 660 667 0.729 872313
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In Figs.1 and 2 the results for K?(L) and y,(L) are
plotted versus L~!. Curves 1 and 2 show the data for
one and two self-avoiding walks, respectively, on strips
with two adsorbing boundaries, and curves 3 and 4 corre-
sponding data for strips with one adsorbing and one free
boundary. Our estimates of the L — oo limits are marked
on the vertical axis with a solid bar and the Monte Carlo
estimates of Meirovitch and Chang with a hatched bar.

In Figs. 1 and 2 the results of the four independent de-
terminations of K} and of y, appear to converge toward
the same value in the limit L — oo, as expected from
ideas of universality. The limiting value of y, seems close
to the prediction y, = $¢ = 2 of conformal invariance.
The transfer-matrix estimates of K} and y, are both in-
consistent with the Monte Carlo estimates of Meirovitch
and Chang (hatched bars), barring a drastic change in
the L-dependence for L > 11.

The data for strips with one adsorbing and one free
edge (curves 3 and 4 in Figs.1 and 2) lie farther from
the limiting value than the data for strips with two
adsorbing edges (curves 1 and 2) but are better be-
haved. The monotonic approach to the limiting values
K?(o0), ys(o0) allows one to extrapolate more reliably.

Applying the van den Broek-Schwartz extrapolation
algorithm [18,19] to the data for one and two self-avoiding
walks on strips with one adsorbing and one free edge,
we generated the sequences shown in Tables V and VI.
Note the excellent convergence. After only two itera-
tions of the algorithm most of the ten entries for K} and
for y, agree to three significant figures with each other
and with the theoretical prediction y, = $¢ = 2. Af-
ter four iterations the two sets of data extrapolate to
K} = 0.7734,0.7739 and y, = 0.66663,0.666 63. These
values of y, only differ from the theoretical value % in the
fifth significant figure.

The data for strips with two adsorbing edges (curves 1
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FIG. 2. y, vs L™'. Curves 1 and 2 show data for one and
two self-avoiding walks, respectively, on strips with two ad-
sorbing edges. Curves 3 and 4 show data for one and two
self-avoiding walks, respectively, on strips with one adsorbing
and one free edge. Our estimate of the limiting value is indi-
cated by a solid bar on the vertical axis and the estimate of
Meirovitch and Chang by a hatched bar.

TABLE V. Sequences K (M, L) generated from Tables III and IV by M applications of the van

den Broek-Schwartz algorithm with parameter a.

L K:(0,L) K:(1,L) K:(2,L) K3(3,L) K:(4,1)
a=-09
3 0.801 0869
4 0.792 4590 0.781 2544
5 0.7875575 0.779 0382 0.7744301
6 0.784 4349 0.7777461 0.7736311 0.773 4368
7 0.7823010 0.776 8776 0.773 4800 0.773 4485 0.773 4385
8 0.780 7669 0.776 2572 0.773 4541 0.773 4252
9 0.779 6207 0.775 7959 0.773 4405
10 0.7787378 0.7754423
11 0.778 0410
a=—-0.85
3 0.943 5387
4 0.8803180 0.821 9057
5 0.849 0404 0.806 6805 0.776 4865
6 0.8307179 0.798 2677 0.774 0651 0.773 8945
7 0.818 8655 0.792 9022 0.773 9066 0.7739134 0.7739121
8 0.8106586 0.789 2225 0.7739137 0.7739117
9 0.804 6867 0.786 5681 0.7739109
10 0.8001738 0.784 5787
11 0.796 6607
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TABLE VI. Sequences ys(M, L) generated from Tables III and IV by M applications of the van

den Broek-Schwartz algorithm with parameter a.

L ys(0, L) ys(1, L) ys(2, L) ys(3,L) Ys(4,L)
a = —0.95
3 0.7537334
4 0.7361763 0.705 7359
5 0.724 8791 0.699 0460 0.664 4327
6 0.716 9373 0.694 3979 0.666 1475 0.666 2665
7 0.7110187 0.690 9813 0.666 2592 0.666 8979 0.666 6324
8 0.706 4216 0.688 3535 0.666 3546 0.665 4592
9 0.702 7388 0.686 2640 0.666 4619
10 0.699 7165 0.684 5597
11 0.697 1881
a = —0.95
3 0.925 6554
4 0.847 0933 0.7721623
5 0.8070178 0.7471769 0.6394118
6 0.782 3183 0.7318343 0.661 1521 0.666 0651
7 0.765 3923 0.721 6452 0.665 3876 0.666 7246 0.666 6302
8 0.753 0004 0.714 3796 0.666 4216 0.666 6051
9 0.743 5064 0.7089176 0.666 5779
10 0.7359855 0.704 6472
11 0.7298723

and 2 in Figs. 1 and 2) are not monotonic, and the stan-
dard extrapolation schemes are not very useful. Observ-
ing that the one- and two-polymer data for K*(L) ap-
pear to approach the limiting value from opposite sides,
we obtain crude bounds by making linear extrapolations
(see the inset of Fig.1) using the data points for L = 10
and 11. This yields 0.7731 < K} < 0.7741. The van den
Broek-Schwartz extrapolations K} = 0.7734 and 0.7739
for strips with one adsorbing and one free edge are within
these bounds.

In Fig.2 curves 1 and 2 appear to curve downwards
toward the limiting value of y,. Making a linear extrap-
olation through the data points for L = 10 and 11, we
obtain y, < 0.672 for both curves. The van den Broek-
Schwartz extrapolations y, = 0.666 63 and 0.666 63 for
strips with one adsorbing and one free edge are consis-
tent with this bound.

Comparing these extrapolations and bounds, we ar-

rive at the final estimates K} = 0.7736 + 0.0006 and
Yys = 0.667 = 0.004. From Egs. (3) and (7) we conclude
exp(e/kT,) = 2.041 £+ 0.002 and ¢ = 0.500 + 0.003.

In summary we have made four independent determi-
nations of 7, and ¢ from numerically exact transfer-
matrix data for infinitely long self-avoiding walks on
strips with widths up to L = 11. The four determina-
tions are in excellent agreement with each other and the
theoretical prediction ¢ = % In our opinion the theoret-
ical prediction is exact and thus provides a useful test of
the reliability of numerical simulations of polymers.
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